
Federated
Authority
HOOMAN BEHNEJAD

1

Agenda
❖Problem

❖Solutions

❖Requirements

❖Limitation

❖Comparison

2

Problem
❖Today each cloud provider has its own proprietary authorization
system, containing different access control rules and models

❖Even with federated authentication, a user may need different
credentials to access different clouds

❖If you have a multi-cloud environment, or a federation of
heterogeneous cloud providers, how can you have a homogeneous
authorization policy that applies equally for all users across all clouds?

3

Solution
❖An Authorization Policy Federation – a group of heterogeneous cloud
providers that agree to cooperate together in the management of their
authorization policies.

❖Has a federation wide Policy Administration Point, that stores
conceptual abstract authorization policies using a cloud-independent
ontology.

❖Have mapping engines (adapters) that convert the abstract policies
into cloud dependent policies (and vice versa) so that they can be
enforced using the existing cloud authorization mechanisms.

❖Have a publish-subscribe infrastructure that keeps the abstract and
cloud dependent policies synchronized

4

FAPManS architecture for policy administration

5

Abstract Policies
❖standard format such as XACML
❖Pros: Standard, supports all AC models and policies

❖Cons: Verbose, Difficult to read/understand, slow to process, has an
excess of features

❖abstract format like Disjunctive Normal Form (DNF)
❖Pros: Easy to understand and represent in RDBMS, fast to process,

can represent any set of policy conditions

❖Cons: Cannot support rich AC features such as obligations, different
conflict resolution rules etc.

6

XACML Sample

7

DNF Sample

8

Database
Policy
Schema

9

Support for Attribute
Hierarchies
❖Some attributes naturally have a hierarchy of values e.g.
roles.

❖it supports attribute hierarchies in the value and hierarchy
tables that show the superior/subordinate relationships
between values.

❖For clouds that do not support attribute hierarchies (e.g.
OpenStack) then the mapping adaptor can replace a
subordinate value with it and all its superiors (so that the
latter will inherit the subordinate’s properties).

10

Support for Cloud Specific
Rules
❖Some policy rules may only apply to one type of
cloud, or a cloud in one admin domain

❖We would still like to represent these in the
abstract policy

❖In this case the rules are not converted into the
abstract ontology, but the attributes and/or
operators are kept “as is” and are flagged in the
cloud_technology table as such

11

Policy Ontology

12

Action Ontology

13

Operator
Ontology

14

API
❖Policy API

❖Rule API

❖Search API

❖Attribute API

15

Adaptors
❖Perform syntactic mapping from cloud technology
specific language to DNF and vice versa

❖Perform semantic mapping from cloud
technology specific terms to the ontology and vice
versa, using mapping rules stored in a DB

16

Adaptors (Cont.)
❖Two operations
❖Policy to DNF, translates a local policy into DNF

❖Policy to local, translates abstract DNF policy to
a local format

❖Two implementations have been built
❖Amazon Web Services policies

❖OpenStack authorization policies

17

OpenStack Implementation
❖OpenStack authentication policy is RBAC based, and rules
comprise key:value pairs, written in JSON and stored in a
text file

❖Rules typically take the form
“<service>:<action>_<resource>”:”<subject>”
❖E.g. “identity:update_region”:“role:admin or is_admin:1”

❖Adaptor syntactically maps the rules into one or more DNF
‘and’ rules
❖E.g. service = identity ^ action = update ^ resource = region ^ role =

admin V service = identity ^ action = update ^ resource = region ^
is_admin = 1

18

AWS Implementation
❖Amazon policies are written in JSON, and comprise two types
❖User based policies attached to subjects (e.g. users, groups, roles)

❖Resource based policies attached to resources

❖Both need to be combined in the DNF

❖AWS policies are much more complex than OpenStack ones
❖ Grant and Deny rules, separate rules on Subjects, Actions, Resources and

Environment, wildcards and variables for values, …

❖Resources and roles are named using Amazon Resource Names (ARNs)
which take the general form
“arn:<Partition>:<Service>:<Region>:<Account>:<Resource>”
❖E.g. “arn:aws:dynamodb:us-east-1:1234567890:table/t1”

19

Requirements to Join
FAPManS
❖Provide an adaptor service that:
❖translates between the local policy and the abstract DNF and vice versa and

❖maps local policy elements to the common ontology, and vice versa

❖Provide a synchronization agent that: receives notifications from
FAPManS when the abstract policy is updated,
❖receives notifications from the local cloud when its local rules policy have

been updated

❖uses the adaptor service to update the local cloud policy when FAPManS is
updated

❖uses the adaptor service to update the local rules in FAPManS when the
local cloud policy is updated (and flags an error if a federation rule has been
modified)

20

Current Limitations
❖Explicit deny rules are lost

❖Mapping of non-enumerable attribute values currently not supported
as its an infinite set
❖Mapping functions could be implemented to support them

❖Policy Ontology/Schema is static – should be dynamically extensible
❖split the ontology definitions into two tables, named core and extensions

and flag extensions as active or dormant

❖Incremental merging of policies currently not supported

21

Venn Diagram Representation of
Policies

22

Alternative Design
❖Centralized PDP that all the federated clouds talk to for authorisation
decisions

23

Comparison
Centralized PDP
❖ Central point of failure
❖ Bottleneck to performance
❖ Intrusive to normal

operation of cloud service
❖ Homogenous policy across

all clouds

FAPManS
❖ No central point of failure
❖ No performance change as

cloud authorisation
decision making is not
altered

❖ Requires a lot of machinery
to implement it

❖ Common abstract policy
can only be the
intersection of local cloud
policies

24

Thank You

25

