Federated
Authority

HOOMAN BEHNEJAD

___]

Agenda

“*Problem
**Solutions
“*Requirements

+»*Limitation

*»*Comparison

Problem

“*Today each cloud provider has its own proprietary authorization
system, containing different access control rules and models

“*Even with federated authentication, a user may need different
credentials to access different clouds

**1f you have a multi-cloud environment, or a federation of
heterogeneous cloud providers, how can you have a homogeneous
authorization policy that applies equally for all users across all clouds?

Solution

**An Authorization Policy Federation — a group of heterogeneous cloud
providers that agree to cooperate together in the management of their
authorization policies.

**Has a federation wide Policy Administration Point, that stores
conceptual abstract authorization policies using a cloud-independent
ontology.

“*Have mapping engines (adapters) that convert the abstract policies
into cloud dependent policies (and vice versa) so that they can be
enforced using the existing cloud authorization mechanisms.

“*Have a publish-subscribe infrastructure that keeps the abstract and
cloud dependent policies synchronized

FAPManS architecture for policy administration

Federated Policies

Publish- ;
Subscribe ° PAP API % PEP
Service PAP-GUI

ederation @
Admin Federation
Admin

‘

: =, Agentfor [Agent for
Aeapter Acgpien Federation ‘ Federation

|) AL

Agent for |\) |(platform 2) o Adapter
Federation ‘ Federation
a

==

Cloud A
(platform 1)

Tenant T1 Admin Tenant T2 Admin Tenant T3 Admin

Abstract Policies

“*standard format such as XACML
**Pros: Standard, supports all AC models and policies

*»Cons: Verbose, Difficult to read/understand, slow to process, has an
excess of features

“*»abstract format like Disjunctive Normal Form (DNF)

**Pros: Easy to understand and represent in RDBMS, fast to process,
can represent any set of policy conditions

“*Cons: Cannot support rich AC features such as obligations, different
conflict resolution rules etc.

XACML Sample

<PolicySet PolicySetld="org.apache.role.boss"
PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:polily-combining-algorithm:permit-overrides"
Version="1.8"
xmlns:xsi="http://www.w3.0rg/2001/XML5chema-1instance”
xsi:schemalocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 xacml-core-v3-schema-wd-17.xsd"
xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" =
<Target=>
<Any0f>
<Allof>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#anyURI">boss</AttributeValue=
<AttributeDesignator MustBePresent="false"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject”
AttributeId="urn:oasis:names:tc:xacml:2.8:subject:role"

DataType="http://www.w3.0rg/2001/XMLSchema#anyURI" />
</Match=

</All0f>
</Any0f=>
</Target>

<!-- Use permissions associated with the boss role --=

<PolicySetIdReference=>org.apache.permissions.doubleit</PolicySetIdReference>
</PolicySet=

DNF Sample

Set of Rules

TN

Rule 1

Set of Conditions

Resource=VM Role=Manager ~ Action=Create Storage < 3GB Name# David

Database

Policy
chema

7 id VARCHAR(64)

¢ id VARCHAR(64)
% policy_id VARCHAR(B4)

< name VARCHAR{255) | - — — — — —j<g <» name VARCHAR(255)
£ description TEXT < description TEXT
»> < enabled TINYINT(1)
5 e >
L

F————

J id VARCHAR(64)
< policy_id VARCHAR(G4)
& tenant_id VARCHAR(64)
< cloud_technology_id VARCHAR(64)
2 name VARCHAR(255)
< description TEXT

¢ id VARCHAR(64)
% attribute_id VARCHAR(64)
4 operator_id VARCHAR(B4)
& value VARCHAR(255)

and_rule_id VARCHAR(G4)

condition_id VARCHAR(E4)

¢ id VARCHAR(64)
] — “»name VARCHAR(255)
<» description TEXT

» id VARCHAR(64)
< attribute_id VARCHAR(G4)
< name VARCHAR(255)

< description TEXT

/i VARCHAR(G4)
— < name VARCHAR(255)
<» description TEXT

J id VARCHAR(64)
< cloud_technology_id VARCHAR(64)
< name VARCHAR(255)
< description TEXT

H%

< parent_id VARCHAR(84)

. child_id VARCHAR(64)
L]

Support for Attribute
Hierarchies

“*Some attributes naturally have a hierarchy of values e.g.
roles.

“*it supports attribute hierarchies in the value and hierarchy
tables that show the superior/subordinate relationships
between values.

“**For clouds that do not support attribute hierarchies (e.g.
OpenStack) then the mapping adaptor can replace a
subordinate value with it and all its superiors (so that the
latter will inherit the subordinate’s properties).

Support for Cloud Specific
Rules

**Some policy rules may only apply to one type of
cloud, or a cloud in one admin domain

**We would still like to represent these in the
abstract policy

“*In this case the rules are not converted into the
abstract ontology, but the attributes and/or
operators are kept “as is” and are flagged in the
cloud _technology table as such

Policy Ontology

[Thing

is_parent_of

‘ @ dnf_policy]—Q—‘ & AC_policy

| |
v has_or_rule |

\
| \
| ® :] .
@ or_rule | @. subject J ; ‘El. resource ’ ‘ @ action ’ |) environment
- has_rules -, \ — —
I Y has_owner P -
| | e /,/
?has_and_rules | s - -
| | has_attributes ..~ -
‘I } % //A
rd -~
| / -
[@ and_rule } | s
| / -
l | - -~
| .
ﬂ]has_rule :

IE'. attribute

| [
‘ ¢ condition L__ condition_has components
-—_ T e
Tt ‘"‘[E'. operator ’
T

Action Ontology

.l—'t support_crud_operations ®) resource
is
& create
support_rw_operations
———————————— — e T
" il e R
is_parent_of
¥ & update ’
@ replace J
& append]
@ suspend \ T el __support_suspend_resume_operations
e I A

—— -

@. SEANENNN 0 ﬂ\\‘\-:::\\
SR ey

& support_start_stop_operations 'BQ virtual_machine
@ stop } e ==
N e

- P o

R -

@ add N ___—~ support_subelements_operations

—— e

@ .
B PRI { & directory

Operator
Ontology

© equal ‘

" not_equal]

¢ greater_than ’

 less_than]

{ greater_or_equa
|

.. operator

/

is_parent_of

/ " less_or_equal
—

 starts_with J

¢ doesnt_start_wi
th

——~

" ends_with]

 doesnt_end_with

(' contains_substr
ing

¢ doesnt_contain_
substring

¢ match J

‘.doesnt_match ’

AP]

***Policy API
“**Rule API
“*Search API
“* Attribute API

Adaptors

***Perform syntactic mapping from cloud technology
specific language to DNF and vice versa

“**Perform semantic mapping from cloud
technology specific terms to the ontology and vice
versa, using mapping rules stored in a DB

Adaptors (Cont.)

**Two operations
***Policy to DNF, translates a local policy into DNF

“**Policy to local, translates abstract DNF policy to
a local format

“*Two implementations have been built
“*Amazon Web Services policies
**OpenStack authorization policies

OpenStack Implementation

**OpenStack authentication policy is RBAC based, and rules
comprise key:value pairs, written in JSON and stored in a
text file

**Rules typically take the form
“<service>:<action> <resource>":"<subject>"
“*E.g. “identity:update_region”:“role:admin or is_admin:1”
** Adaptor syntactically maps the rules into one or more DNF
‘and’ rules
**E.g. service = identity * action = update ” resource = region " role =
admin V service = identity » action = update " resource = region »
is_ admin=1

AWS Implementation

** Amazon policies are written in JSON, and comprise two types
“*User based policies attached to subjects (e.g. users, groups, roles)

“*Resource based policies attached to resources
**Both need to be combined in the DNF

** AWS policies are much more complex than OpenStack ones

**» Grant and Deny rules, separate rules on Subjects, Actions, Resources and
Environment, wildcards and variables for values, ...

“*Resources and roles are named using Amazon Resource Names (ARNs)
which take the general form
“arn:<Partition>:<Service>:<Region>:<Account>:<Resource>"

**E.g. “arn:aws:dynamodb:us-east-1:1234567890:table/t1”

Requirements to Join
FAPManS

**Provide an adaptor service that:
“*translates between the local policy and the abstract DNF and vice versa and

“*maps local policy elements to the common ontology, and vice versa

“*Provide a synchronization agent that: receives notifications from
FAPManS when the abstract policy is updated,

“*receives notifications from the local cloud when its local rules policy have
been updated

**uses the adaptor service to update the local cloud policy when FAPManS is
updated

“*uses the adaptor service to update the local rules in FAPManS when the
local cloud policy is updated (and flags an error if a federation rule has been
modified)

Current Limitations

“*Explicit deny rules are lost

**Mapping of non-enumerable attribute values currently not supported
as its an infinite set

“*Mapping functions could be implemented to support them

“*Policy Ontology/Schema is static — should be dynamically extensible

“»split the ontology definitions into two tables, named core and extensions
and flag extensions as active or dormant

“*Incremental merging of policies currently not supported

VVenn Diagram Representation of
Policies

Action
#Create

Subject=*
&Resource=*

Subject
zDavio

Resource=VM&
Action=Create

Resource
zVM

Subject=*
&Action=*

Alternative Design

+*Centralized PDP that all the federated clouds talk to for authorisation
decisions

Comparison

Centralized PDP FAPManS
¢ Central point of failure *¢* No central point of failure
¢ Bottleneck to performance *¢* No performance change as
+* Intrusive to normal cloud authorisation
operation of cloud service decision making is not
** Homogenous policy across altered
all clouds ¢ Requires a lot of machinery

to implement it

s Common abstract policy
can only be the
intersection of local cloud
policies

Thank You

